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SUMMARY 

A control-volume based finite element method of equal-order type for three-dimensional incompressible turbulent 
fluid flow, heat transfer, and related phenomena is presented. The discretization equations are based mainly on the 
physics of the phenomena under consideration, more than on mathematical arguments. Special emphasis is 
devoted to the discretization of the convective terms and the continuity equation, and to the treatment of the 
boundary conditions imposed by the use of a high Reynolds k-E type turbulence model. The pressure-velocity 
coupling in the fluid flow calculation is made from a derivative of the original SIMPLER method, without pressure 
correction. The discretized equations are solved in a sequential, rather than a coupled, form with significant 
advantages in the required computer time and storage. The method is an extension of a former version proposed by 
us for two-dimensional, laminar problems, and is here successfully applied to the following situations: three- 
dimensional deflected turbulent jet, and flows in 90" and 45" junctions of ducts with rectangular cross sections. 
The calculated results are in very good agreement with the experimental and numerical (obtained with the well 
established finite difference method) data available in the literature. 

KEY WORDS: three-dimensional flow; control-volume finite element method; mass weighted upwind interpolation; equal-order 
method turbulent flow 

1. INTRODUCTION 

The finite difference method (FDM) and the finite element method (FEM) are two major approaches 
that are currently used to numerically solve the partial differential equations (PDE) associated with 
fluid flow, heat transfer, and related The FDM has been extensively and successfully 
used to simulate a large variety of problems, but its inherent simplicity is degraded when the domain 
geometry is not close to the most conventional orthogonal co-ordinate systems. The geometric details 
of the calculation domain do not affect the simplicity of the FEM, and the capability of easily dealing 
with complex geometries without additional difficulties is one of the major advantages of this family of 
methods. 

The usual practice in the FEM is to follow the conventional weighted residuals or variational 
approaches to obtain the discrete analogue of the partial differential  equation^.^ In this work, the 
control volume based approach is followed with its well known advantages! The CVFEM presented 
here is the result of a study of the works of Baliga,' Baliga and Patankar3',* Prakash and Patankar: 
l'rakash,'' Hookey," Schneider? and Saabas." The implementation of the method of S a a b a ~ ' ~ , ' ~  is 
followed with some modifications. 
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A very complete summary of the CVFEM developed by Baliga and Patankar,53637 including the 
modifications proposed by Prakash" and Hookey" is presented by Baliga and Patankar.* These 
methods have the common characteristic of using a shape function which is exponential in the mean 
flow direction and linear in the directions normal to it. A major shortcoming is that negative 
coefficients can arise in the discretization equations, with the subsequent inherent  problem^.'^ 
Additional difficulties are experienced by the CVFEMs proposed Prakash" and Hookey," especially 
in problems with open domains, where inflows and outllows occur. These difficulties were experienced 
in a preliminary phase of this work, and they have been discussed in detail by Saabas." 

In incompressible flow problems the pressure distribution is implicitly governed by the momentum 
and the continuity equations, and special care is needed to avoid the possibility of physically unrealistic 
checkerboard-type pressure distributions. If the source term is not considered in the shape 
it is necessary to use a so-called unequal-order method. However, a co-located equal-order method, in 
which all the variables are computed at the same grid points in the domain, has been proposed by 
M a s h  and Patankar.' 

The above mentioned difficultues can be overcome if the following practice is adopted: (i) the 
diffusive fluxes are computed assuming a linear profile in the three coordinate directions over each 
element; (ii) the convective fluxes are computed from the mass-weighted skewed upwinding procedure 
of Schneider and Raw?'5 which is adapted to the form of the present finite-elements; and (iii) the 
equal-order method proposed by Prakash and Patankd is followed to obtain a suitable discretization 
equation for the pressure. This is esssentially the procedure followed by Costa and Oliveira' and 
Saabas'z, and discussed in recent papers by Masson et a1I6 and Saabas and Baliga.",'* The 
ingredients used in the present work are essentially those used by Saabas", but there are some 
novelties in the derivation and presentation of the method. Additionally, the source terms are treated in 
a different way, as well as the boundary conditions associated with the used turbulence model. 

The advantages and disadvantages of the proposed method over the standard ones are: (i) the 
physical meaning and the conservative characteristics of the whole method, which is not the usual 
practice within the finite element methods; (ii) the use of the control-volume formulation together with 
finite elements, which have the capability of easily working with domains of complex geometry, is a 
great advantage over the well established control-volume finite difference methods; and (iii) the used 
segregated approach in the context of finite element methods, which require much less computational 
resources and time and is more flexible than the usual coupled ones. 

The applications presented in order to show the capabilities of the method are devoted to turbulent 
fluid flow calculations. 

2. MATHEMATICAL MODELLING 
2.1. The general differential equation 

All the PDEs governing the steady three-dimensional turbulent situations involving fluid flow, heat 
transfer, and related phenomena can be obtained as specific particular cases of the following general 
differential equation, written in the conservative form and in Cartesian tensor notation, for i ranging 
from 1 to 3, 

for the time-mean variables. The conservation principles are established for extensive (proportional to 
the mass m) properties 0, the $J variable in the general differential equation being an intensive (mass 
independent) property, which is the specific value of a, that is, d, = Wn. 
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Table I. Set of constants used in the high-Reynolds k-E turbulence model 

constant CP 0 k  0, C1, c2, 

value 0.09 1 .o 1.3 1 44 1.92 

2.2. Turbulence modelling 

The turbulence transport is simulated by the well known high-Reynolds k-8 turbulence model,lg in 
which two additional PDEs must be solved for the variables k = a/2, the turbulence kinetic energy 
per unit mass, and E = ( p / p ) ( a U : / a ~ ~ ) ~ ,  the isotropic rate of dissipation of k, where u: is the fluctuating 
velocity and p is the dynamic viscosity of the fluid. The turbulent dynamic viscosity, which is a 
property of the flow, is pt= C,pk2/&. 

As in all turbulence models, the high-Reynolds k-8 turbulence model involves some empirical 
information. In this work, we use the five empirical constants recommended by Launder and 
Spalding" which are listed in Table I. 

2.3. Boundary conditions imposed by the high-Reynolds k-E turbulence model 

In turbulent flows, the existence of intense gradients near the wall boundaries requires some special 
treatment to allow computations with grids that are not very fine near the wall. Here, the viscous 
regions close to the wall are bridged by the use of well-established wall hctions:o and the boundary 
conditions for the near-wall points are determined from suitable relationships which account for the 
sharp gradients that exist there. 

Considering a turbulent boundary layer over a flat plate, and assuming that the shear stress ow is 
constant near the wall, it can be easily shown that the velocity exhibits the u+=ln(Ey+)l~ 
non-dimensional logarithmic profile in the inertial sub-layer. Here, the reference velocity is the 
friction velocity, u, = m, the non-dimensional distance from the wall is the Reynolds number, 
y f  =pug/p, x=O.42 is the von K h h  constant, and the E factor, which depends of the wall 
roughness, can be assumed to be E = 9.8 for smooth walls. 

In the near-wall region, it can be assumed that the production and dissipation of turbulence kinetic 
energy are in equilibrium, that is, ptPk = PE. After some manipulation of this reduced form of the k 
equation, it can be shown that k = u ; / G  and E = u;/w, are possible boundary conditions fork and E, 
respectively. However, as u, is unknown, it is a better practice to express k and E as hc t ions  of only 
known variables. The introduction of the non-dimensional logarithmic profile and the definition of the 
friction velocity leads, after some manipulation, to the following expression of ow 

z, = -n,up, (2) 

where Up is the velocity component parallel to the wall, and 

The expression of z, given by (2), when multiplied by the area over which it acts, is the boundary 
condition to use in the momentum equations. In general three-dimensional problems z, (and Up) have 
three non-zero components. Elimination of u, through (2) in the above equations then leads to the more 
suitable expressions for k and E boundary conditions 



594 INCOMPRESSIBLE TURBULENT FLUID FLOW 

Table 11. 4 and its corresponding expressions for Teff,+ and S+. 

( cpk2)3’4 
E =  xv 

An expression for y + ,  which is determined from only known varaibles, can also be found as 

The k and E boundary conditions at the inflow boundaries, where the inlet velocity and the 
tubulence intensity (defined as Ti = J G / u b  = J Z J 3 j U i n )  are given, may be expressed by 
k,=(3/2)(TUiJ2 and E = k3/*/l ,  were 1 is the smallest diameter possible for the large eddies. Usual 
values range from 1 = 0.03L to 1 = 0.1 5L, where L is the relevant length of the i d o w  boundary. 

Y+ = P Y P I P .  

2.4. Summary of the mathematical modelling 

The particular expressions of reff,g and S+ for the corresponding specifications of the general 
dependent variable, 4, are presented in Table 11, where Pk is the production rate of k by the action of 
the velocity gradients, given by 

3. INTEGRAL CONSERVATION EQUATION AND DOMAIN DISCETLZATION 

3. I .  Integral conservation equation 

The general differential equation (1) can be rewritten in the form 

where the total (diffusive plus convective) flux components, J$,i = pui4 - reff,+(r34/axi), in the i 
direction are identified. Equation (7) can now be written in terms of fluxes as &J+,ilaxi = S,  but, as the 
left side of this equation is the divergence of the total flux, it becomes 

divJg = S,. (8) 

Equation (8) needs to be integrated over a control volume, cv, to find the 4 distribution, and this is 
established as 

J+.n dS = lmS4 dV J, (9) 

after application of the Gauss divergence theorem on the left hand side, where cs is the closed control 
surface that contains the control volume, cv, and n is the unit outward normal to this control surface. 
The total flux, J4, can be decomposed in its difisive and convective components defined, respectively, 
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as J$ = -Teff,+V4 = -reff,+(a4/axi)ei and 6 = pV4 = pu&i, where ej is the unit vector in the i 
direction. Finally, for later use, the integral of the general differential equation can be written in the 
form 

which is the most suitable form to integrate the different contributions (convective, diffusive, and 
source) for the conservation of @ over a control volume. As will be seen later, each of these 
contributions is integrated by a different procedure, the leading reasons being associated with the 
physics of each particular phenomenon. 

3.2. Domain discretization 

The domain is divided into four-node tetrahedral elements. For reasons of simplicity and economy, 
in the present CVFEM, the domain is discretized using a structured grid in which the nodes are 
distributed along easily identifiable lines, and the number of such lines along a particular direction is 
the same throughout the whole domain. Following Saabas," to obtain the structured grid, the domain 
is first discretized into eight node bricks, and each brick is then divided into six four node tetrahedral 
elements, as sketched in Figure 1. All the dependent variables are stored at these nodes. Due to the 
planar character of the brick surfaces, irregular boundaries are treated as piecewise-planar surfaces. 
The division of each brick into six tetrahedral elements should be made with care to ensure a good 
discretization equation for the pressure at all the nodes; this will be examined fiuther, when 
discretizing the pressure equation. 

After definition of the finite elements, the next step is the construction of the control volumes. This 
definition differs from that followed by LeDain-Muir and Baliga?' and is that proposed by 

Figure 1. Domain discretization 
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which is the three-dimensional extension of the discretization suggested by 
McCormick.” The midpoints of the element edges are defined as the points a to f i n  Figure 2, and 
these midpoints are then joined to form three plane control sub-surfaces, two of which are triangular 
and one is quadrilateral. 

The area of each of the control sub-surfaces is given by 

S1 = lac x af//2, SZ = Ifd x fcl, S3 = Ibc x be1/2 

nl = (ac x af)/lac x afl, nz = (fd x fc)/lfd x fcl, n3 = (bc x be)/lbc x be(. 

(11) 

and the unit outward normals to each of these control sub-surfaces are 

(12) 
These three control sub-surfaces define four control sub-volumes in a tetrahedral element, each one 
associated with a node of the element, and their volumes are 

V1 = V3 = VJ8,  Vz = V4 = 3Ve/8,  (13)  

with V,  = lAl/6, where A is given by 

3 

n=l 
A = x(xl ,n --1,4)[(XZ,(n+l) -X2,4)(X3,(n+Z) - x3,4) - (XZ,(n+2) - XZ,4)(X3,(n+l) - X3,4)I. (14) 

The operator ( ) acts over the n and k indices through the expressions (n  + k) = n + k if n + k < 3 
and (n + k) = n + k-3 if n + k > 3,  and 
When the bricks are assembled, the control sub-surfaces and sub-volumes are also assembled to 

form a closed control surface around each internal node, thus defining a control volume associated 
with it. To make t h i s  assembling possible, the form in which the bricks are divided into six tetrahedral 
elements must be ordered, defining four different types of bricks. The bricks fill in the domain in a 
periodic fashion, with the repetition of a set of four (of different type) bricks. 

denotes the xi co-ordinate at the n node. 

Figure 2. Control sub-volumes and sub-surfaces definitions in a element 
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4. INTEGRATION OF THE DIFFERENT TERMS OVER THE CONTROL SUB-SURFACES 
AND SUB-VOLUMES 

4. I .  Integration of the source term 

The source term can be expressed in the following linearized general form14 S+= 
&,p$ + S+,c(S+,p < 0). In an element, it is assumed that S+,p and S+,c are associated with each 
node, that is, in each element (S+,c)n and (S+,,),, n = 1, 2, 3, 4, are defined and the linearized general 
form of S+ becomes 

(s+)n = (s+,c)n + ( S + , ~ ) n $ n  ((S+,P)~ GO>* (15) 
The integration of the source term is immediate with the above assumptions to give 

where the summation convention does not apply. 

4.2. Integration of the difisive flux 

element, that is 
The diffusive flux is integrated assuming that $ varies linearly with the xi coordinates in each 

(17) 
4 = A g x i  i +A$, 

which is consistent with the elliptical nature of the diffusion phenomenon. As the diffusive flux 
includes only the first-order partial derivatives of $, the value (or the expression) of A$ is irrelevant. In 
tensor notation, for n ranging from 1 to 4, we can write 

A$ = B:$,,/A, (1 8) 

where A is the determinant given by (14). The expressions for the B: coefficients, for n = 1, 2 and 3, 
can be written as 

B; = (%+l),(n+l) - X(i+l),4)(x(i+2).(n+2) - x(i+2),4) - (x(i+l),(n+2) - X(i+1),4)(X(i+2),(n+l) - x(i+2),4), 

(19) 
with the ( ) operator as introduced above, and the Bi coefficient is given by 

3 

n=l 
B4 = - p i .  

The effective diffusion coefficient is the reff,+ value at the centroid of the element, which can be 
calculated from the arithmetic mean of p, k and E at the nodes or by some other more convenient 
average procedure. It is assumed to prevail over the whole element. 

The integration of the diffusive flux over the @lane) control sub-surface s is given by 

with the CDs,n coefficients given by 
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where the summation convention does not apply to the s index. The discretization of the diffusive flux 
can lead to negative coefficients in the final discretization equation if highly distorted (non-Delaunay) 
elements are 

If 4 is constant over one element, the 4 partial derivatives are null over the element, and at a sub- 
control surface s, CCD,,, = 0. Thus, each of the CDS,, coefficients can be expressed as the symmetric 
of the summation of the other three, that is, 

4 

CDSvk=-CCDs , , ,  V k = 1 , 2 , 3 , 4 ,  V ~ = 1 , 2 , 3 .  (23) 
“=l 
n#k 

4.3. Integration of the convectivepux I 

The integration of the convective flux over the (plane) control sub-surface s is given by 

.n dS = pV4.n dS = msq5ips, (24) 
Iss I, 

where dips is the value of 4 at the integration point over the integration sub-surface s, and the mass 
flow rate m, that crosses the s sub-surface is obtained from the expression 

riz, = p(V),.n,S,. (25) 
The summation convention does not apply to (24) and (25). The term (V), indicates an appropriate 
average over the sub-surface s. This will be discussed further later in the paper, in the context of mass 
flux interpolation. Within each element the centroidal value of p is assumed to prevail, 

in terms of the nodal values of 4. Special 
care is needed to do so because negative coefficients can arise in the final discretization equations. 
Here, the convective flux is integrated following the mass weighted scheme due to Schneider and 
Raw,” but adapted to the present elements and control sub-surfaces. Saabas12 has called this 
adaptation the MAW (mass weighted) scheme. 

The problem is now to specify the sub-surface values 

4.4. llte mass-weighted scheme (UA W) 

The value of +ips should be strongly dependent on the upstream value of 4 with respect to the 
velocity (V),, and essentially independent of the downstream value of 4. This is accomplished through 
the mass weighted scheme of Schneider and Raw,” which is used here with the merits of physical 
realism in modelling the convective phenomenon and only positive contributions for the coefficients in 
the final discretization equations. 

The MAW scheme is obtained by establishing the conservation principles of mass and 0 over each 
of the control sub-volumes contained in one elment, and considering the upstream character of the 
convection phenomenon when establishing the 0 conservation. Once this has been made to the four 
control sub-volumes in one element, each value is obtained as a function of the other 4ips values 
and also of the nodal values of 4. One obtain then1,4,12715,16 

4ipl =fi& + (1 -fi)k14ip2 + (1 -g1)421* ( 2 6 4  
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where 

fi = m a x ( F ,  o), g l =  m a x [ m i n e ,  1). 01. 
fi = m a x ( F . O ) ,  g2 =max[min@, 1),0], h2 =max[mine , l ) ,O] .  (27b) 

= max(!$, 0). g3 = m a x [ m i n k ,  1). 01, 

with the mass flow rates h, defined in a direction similar to the outward unit normal n,, as in Figure 2. 
It should be noted that when ms is zero, the product m,&, (equation (24)) vanishes through rh, and the 
value of &, is thus irrelevant. 

The results of the MAW scheme (equation (26)) are written in the matrix form 
[AI3 x [$*I3 1 = [B]3 4[$]4 1, and in order to obtain the &,, values as functions of the 
nodal values 9, only, we need to find the inverse matrix of the $ips coefficients on the left-hand side. 
The inversion process can be simplified due to the zero elements in the left-hand side. The inversion 
process can be simplified due to the zero elements in the left-hand side matrix, and the inverse matrix 
becomes 

where 

A[A] = 1 - (1 -fi)hzf3g3 - (1 -filg&gz (29) 

is the determinant of the left-hand side matrix. Multiplying now both sides of the obtained result of the 
MAW scheme by the inverse matrix [A]-' one obtains an equation that can be written formally as 
[$& = [ q 3  4[$]4 1, which is the suitable form to express the values at the control sub- 
surfaces as functions of the nodal values of $. Another way is to refer one row at each time, which is 
the expression corresponding to the s control sub-surface (s can be 1, 2 or 3), to give 

4*, = ICIS,,$,9 (30) 

where the n index ranges from 1 to 4 .  As referred by Schneider: the mass-weighted scheme presented 
is almost second-order accurate. 

When $ is constant over one element, equation (30) gives, for each sub-control surface s, 
C[qs,, = 1. Thus each of the [qS,, coefficients can be written as the difference to the unity of the 
summation of the other [qS,n, that is, 

4 

[CIS,c = 1 - C[CJ,,,, V k =  1 , 2 , 3 , 4 ,  VS = 1 , 2 , 3 .  (31) 
"=I 
M P  

4.5. Integration of the convective Jlux II 

integration of the convective flux over the control sub-surface s becomes 
in (24) is replaced by the expression obtained with the MAW scheme (equation (30)), and the 
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with the CCs,n coefficients given by 

CCSJ = &[CIS,, 
noting that the summation convention does not apply in (33). 

Multiplying both sides of (31) by ms, and using the result of (33) one obtains 
4 

CCs,,=li?,-CCC,,,, Vk=1,2,3,4,  V .~= l ,2 ,3 .  
I= I 
n#k 

(33) 

(34) 

5. DISCRETIZATION EQUATION FOR 4 
The discretization equation for 4 is obtained by establishing the 0 conservation principle over each of 
the control volumes in the domain. This conservation principle is made through the assembling of the 
contributions of the control sub-volumes, which were derived above. 

5. I .  Discretization equation for an internal node 

Each element gives its own contribution, through the control sub-volumes in which it is divided, to 
the establishment of the conservation equation for <D in each of the control volumes that contain the 
nodes which are the vertices of the element under analysis. For the nodes in one element, retaining the 
way that the unit normal to each control sub-surface is directed (Figure 2), the control sub-surfaces that 
surround each control sub-volume, and using (23) and (34) in the more convenient way (the k index is 
chosen such that it coincides with the index of the node for which the conservation principle is being 
established), equation (10) becomes for each interior node P of the domain 

[ 5 anb - c vnc(&,P)nc]4P = c a n d n b  -k c vnc(S@,C)nc* (35) 
nc nb nc 

where the summation convention does not apply. The summation in nb is made over the neighbouring 
nodes of node P, and the summation in nc is made over the control sub-volumes that, when assembled, 
form the entire control volume associated with node I! 

The last summation on the right-hand side of (35) can be written as 
c vnc(&,c)nc = VP(S+,C)P, (36) 
nc 

where 

VP = C Vnc 
nc 

is the volume of the control volume associated with node P, and 

(37) 

is the mean value of S+,c in the control volume. Submitting the second summation on the left-hand side 
of (35) to a similar treatment, (35) reads 

where 
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and 

All contributions of the discretized convective transport terms to the coefficients anb in (39) are 
positive (this is ensured by the MAW scheme). Furthermore, Delaunay elements are recommended to 
ensure that the discretized diffusive transport terms also contributes positively to anb.16723 Owing to the 
fact that S,+s < 0 (equation (15)) the up coefficient is obtained as a sum of positive terms only, and 
lap[ 2 lanbl. This dominance of the centml coejicient is of major importance to find the iterative type 
of solution for the resulting system of algegraic equations. Finally, the anb coefficients are the same for 
the three velocity components, their discretization equations differing only by the up and bbp 
coefficients. 

5.2. Discretization equation for a boundary node 

As stated in the integral conservation equation (equation (1 0)), the portion of the control surface that 
is coincident with the domain boundary should also be travelled in the integration process, in order to 
close the control surface. This is made through an additional integral extended over the control surface 
that coincides with the physical boundary. From (10) and (35), it can be stated that the conservation 
equation for a boundary node is similar to (39) but with 

bbp = V P ( ~ + , C ) P  - @B + tite(pp>, (42) 

where k~ and FB are, respectively, the mass flow rate and the total (convective plus diffusive) rate of CP 
leaving the domain through the boundary that coincides with the control surface associated with the 
node P: 

5.3. Boundary conditions for (p 

There are essentially three types of boundary conditions: no-flow, inflow, and outflow. 
A no-flow boundary means that an impermeable wall coincides with the boundary location and 

r i t ~  = 0. At such a boundary, either the value of the dependent variable C#J is specified or a relationship 
about the flux at the boundary FB is known. 

At an inflow boundary, the value of C#J must be specified, and is usually known. This information is 
introduced in the discretization equation through the manipulation of the ap and bbp coefficients. To do 
so, we make ap= G and bbp= G4smifica, where G is a great number, usually G = lo3'. The ap and 
bbp coefficients are dominant in the discretization equation which reduces to ( p ~ = 4 ~ i f i d .  This 
practice is advantageous by the following reasons. First, one need change only two coefficients and not 
all the neighbouring coefficients (26 in this case). Second, the coefficients in the discretization 
equations for the velocity components are the same, exception made to the ap and bbp. Thus, we only 
need to have one discretization equation for all the velocity components with the possibility of 
changing the values of up and bb,. 

At an outflow boundary, neither the value nor the flux of (p are known. This apparent difficulty is 
solved by noting that at the outflow boundaries the diffusive influences are negligible as compared with 
the convective ones, and we can make FB % mB4B, where (pB is some suitable average value of (p at the 
boundary. An interesting practice is obtained with ( p ~  = (pp, no additional information being needed at 
the outflow boundary as given by (42). In other words, (39), obtained for an internal node, applies also 
for an outflow boundary node. 
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6. FLOW FIELD CALCULATION 

The major problem to solve now is: how to obtain an equation for the pressure from the continuity 
equation that does not contain the pressure explicitly? We follow the essentials of the method proposed 
by Prakash and P a d  for two-dimensional situations. This procedure has been successhlly used 
by Costa et aL132 for two-dimensional CVFEMs and by Saabas and Baliga",'* for two and three- 
dimensional CVFEMs, by Rice and S~hnipke*~ for two-dimensional FEMs, and by Perk et ~ 1 . ' ~  for 
two-dimensional FVMs. 

6.1. Discretization equations for the velocity components 

The analogue of (41) becomes, for the ui velocity component, 

bbf = Vp(Sui,c)p = V P ( S  - s); (43) 

If the part of the bbp term which is independent of the pressure is designated by bp, the discretization 
equation for the ui velocity component becomes, in the form of (39), 

or 

where the pseudo-velocity hip is defined as 

C anbUinb + b; 
(46) 2. - nb 

af IP - 

and the pressure coefficient is given by 

d: = Vp/af;:. (47) 

At this point it should be noted that (45) states that the velocity components, as given by the 
momentum equations, can be expressed as a sum of two terms: the explicit pressure influence, and the 
remaining influences that contain no pressure. This is an important aspect because one of the problems 
to solve in this section is to introduce explicitly the pressure into the continuity equation through the 
velocities contained in it. When the velocity is specified at a node, if the corresponding value is 
introduced as a boundary condition through the manipulation of up and bbp as given above, the up 
coefficient is comparatively great and the pressure coefficient vanishes to zero, thus making this 
velocity independent of the pressure and the nodal pseudo-velocity equal to the nodal velocity, as 
desired. 

6.2. The mass conserving velocityfierd 

For the integration of the continuity equation, the mass flux J" is, in principle, derived using the 
velocity field V =Utei.  This way is obvious, but there are serious problems associated with this 
practice. 

First, if such a mass flux were used in (10) (with zero source and diffusion terms and 4 = 1) the 
result would be an equation in terms of the nodal velocities (uJn and not in terms of nodal pressures, as 
desired. Second, if (45) were used to substitute the nodal velocities (uj), in the so obtained equation, 
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such an equation should account explicitly for the pressure and, in principle, a discretization equation 
for this variable could be obtained. However, the resulting equation, in the form of (39), can 
unfortunately contain only non-neighbouring nodes of the node P, which is a singularity for the 
obtained system of equations. In conclusion, a more suitable mass conserving velocity field needs to 
be found to compute the mass flux entering in (10). 

Taking guidance from (45), within each element, a mass conserving velocity field defined by 

could be used to obtain a suitable discretization equation for the pressure. The nodal values of the 
pseudo-velocities axe given by (46), the nodal values of the pressure coefficients are given by (47), and 
all these quantities are assumed to vary linearly with the xi co-ordinates within each element. The 
subscript e is used to mean that aplaXi corresponds to one element, and as the pressure is assumed to 
vary linearly within each element (this assumption is consistent with the elliptic character of the 
pressure), these pressure gradient components are constant in each element. 

At this point, it should be noted that as the velocity field given by (48) verifies mass conservation, 
the mass flow rates used in the integration of the convective flux by the MAW scheme should be 
calculated using this same mass conserving velocity field. The use of two different velocity fields can 
be seen as an inconsistency of the method, but it is the price to pay when using control volume equal- 
order finite element methods, or non-staggered finite difference methods for fluid flow 
calculations. $9~1 2,2425 

6.3. Integration of the continuity equation 

The mass flux based on the mass conserving velocity field given by (48) is integrated assuming (as 
for the integration of the convective fluxes) that, within an element, the centroidal value of density 
prevails, and the pseudo-velocities and pressure coefficients vary linearly. Thus, in a element, 

where the summation convention does not apply to the i index. 

that of the convective flux to give 
The integration of the mass flux over the (plane) control sub-surface s is made in a way similar to 

with 

CP,,. = -- "" B;n,i (51) A 
and 

BPs = Psssfii,sns,i, (52) 
where the summation convention does not apply to the s index and to the d,"'Bk product. 

One should note the similarity between the CD3,n coefficients given by (22) and the CPs,n 
coefficients given by (5 l), and the result given by (23) is also valid for the CP,," coefficients. As it was 
noticed when integrating the diffusive flux, with Delaunay elements, it contributes only with positive 
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coefficients for the final discretization equation, and the same is valid for the pressure discretization 
equation. 

6.4. Discretization equation for p at an internal node 

Following a way similar to that used to obtain the discretized equation for 4, we obtain, at each 
node, a pressure discretization equation that establishes mass conservation over the control volume 
associated with the internal node I? This can be Written, in the form of (39), with a$ = zg,, 

with the nb summation extended to the neighbouing nodes of node P, and the summation convention 
does not apply. 

6.5. Discretization equation for p at a boundary node 

node, the discretization equation for p at a boundary node can be obtained as 
Following the arguments invoked when establishing the # discretization equation at a boundary 

&P = c &Pnb -k bbP, - m B ,  (54) 
nb 

where r i t ~  is the mass flow rate leaving the domain through the boundary associated with the node I? 

6.6. Boundary conditions for p 

specified mass flow rate. 
There are essentially two types of boundary conditions for the p equation: known pressure, or 

If the pressure is specified at the boundary node, (54) is reduced to p,, =&&fie& 

If the mass flow rate is specified, h~ is easily evaluated and incorporated in (54). 

6.7. Treatment of the boundary conditions introduced by the wall law 

For the general velocity parallel to a wall, VII , the fixed wall influence is always a loss of momentum 
so that T, and VII have opposite signs. Then, (2) can be written, in terms of forces as 
F,= -(AJw)Vll, where A, is the area over which 1, acts. We note that V,, is the velocity 
component parallel to the wall which, in the general case, has three non-zero components, and for the 
co-ordinate direction i the relation is Fw,i= -(AJ,)Vl\,i- 

The surface unit outward normal n is easily known from the co-ordinates of the nodes of the 
triangular two-dimensional element which is the face of the tetrahedral element that coincides with the 
domain boundary. The velocity component perpendicular to the surface is calculated as VI = Mln 
with MI = upi. The parallel component, VII , can now be easily evaluated as VII = V - V I, and the 
components of VII are = ui-Mini. Introducing the expressions for VIl,i and MI in the expression 
of FWsi we obtain, for the force components, 

(55)  1 3 
Fw,i = - (AJw) U i ( 1  - n:) - C Ujninj , 

j= l  [ j#i  

where the summation convention does not apply. 
The treatment of the boundary conditions due to the use of the wall law in the momentum equations 

are given in an integrated form by (55). Noting the particular form of (55), for the ui velocity 
component, the symmetric of the term - (AJ,)(l - n:) that multiplies ui, which is always positive, is 
introduced in the a; coefficient, the remaining terms being introduced in the bb; coefficient. 
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7. PROCEDURE CLOSURE 

7. I .  Under-relaxation, solution, convergence and pressure level 

Under-relaxation. With the procedure proposed by Patad~ar, '~ fiom (39) the following equation is 
obtained 

where a is the under-reluxation factor. The under-relaxation, which is introduced before the resolution 
of the equations, is made only by changing the ap and bbp coefficients as it is evident from (56). In the 
test problems, a value of a = 0.5 for all the variables other thanp was found to give good results. In the 
proposed method, the pressure equation is not under-relaxed, and the pseudo-velocities and pressure 
coefficients are evaluated before the under-relaxation operation is performed. There are two reasons for 
this procedure: (i) if we under-relax the pressure equation the mass conservation principle is degraded; 
and (ii) Majumda?6 has shown (in the context of finite differences) that the under-relaxation must be 
carefully performed when using non-staggered grids with control volume finite difference methods, 
because the final solution can depend on the under-relaxation factor; the problem is the same when 
using equal-order control volume finite element methods. To avoid this dependence, either one stores 
the velocity components in each control sub-surface in a element, or one performs the under-relaxation 
after evaluation of the pseudo-velocities and pressure coefficients. The latter way is preferred due to its 
simplicity and no additional needs of storage capacity. 

Solution. For each particular # and for p ,  and at each iteration level, there is a system of N, algebraic 
equations like (39) that needs to be solved, where N,, is the number of nodes in the domain. As the 
equations for # are similar to that forp, the same solver can be used to solve all these equations. 
Iterative methods are viable and practical for the solution of the proposed discretization equations 
system, because the positivity of the coefficients and the diagonal dominance of such systems 
guarantee the convergence of the iterative methods. To accelerate the convergence we use a line 
Gauss-Seidel method, in which we solve for each line in the domain with the TDMA alg~rithm.'~ 
When the coefficients in the discretization equations become strongly anisotropic, the TDMA solver 
can stall, and we use a block-correction 2D and 1D procedure added to the solver.27 This was found to 
be especially important when solving the pressure discretization equations. 

Convergence. A suitable stop criterium is to test whether the summation of the equations residuals is 
sufficiently small in the domain for each particular 4 and for p .  Thus, it is tested whether the relation 

where the summation is made over all the nodes other than those where 4 has a specified value and the 
subscript in refer the inlet boundaries, is satisfied for any suitable small value of 6, .  Owing to the 
iterative nature of the method, the discretization equations contain only tentative coefficients, and it is 
thus a bad practice to spend an excessive amount of work to verify the relation (57) with very small 
values of 6,. Only the pressure equation (mass conservation equation) must be solved to satisfy 
relation (57) with a small value of 6, because all the method is based in a flow field for which the mass 
conservation is verified. 

Pressure level. In incompressible flow calculations the pressure level is irrelevant, and only the 
pressure differences are considered in the Navier-Stokes equations. In order to maintain the pressure 
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level within acceptable values and small round-off errors, it is a good practice to refer the pressure to 
that of a point in the domain for which the pressure is made to be zero. 

7.2, Summary of the method for implementation 

been defined, the following major steps must be performed. 
For implementation purposes one now summarize the method described above. Once the grid has 

1. Velocity field, pressure field, and other scalar fields are guessed. 
2. The properties are calculated and stored at each node. The mass flow rates at the outflow 

boundaries are calculated, and they are affected by a correction factor in order to guarantee that 
the global mass conservation is satisfied in the domain. Once convergence is obtained this 
multiplicative factor will be one, and does not affect the final solution. 

3. The anb discretization coefficients for the velocity components, the same for all of them, are 
calculated. 

4. The source terms, without pressure, are integrated for the ui equations, and the result introduced 
in the aff: and b; coefficients. The additional integrated terms due to the boundary conditions 
imposed over the momentum equations by the wall law are also calculated and introduced in the 
ap" and b: coefficients. 

5.  The additional boundary conditions for the ui equations are introduced by manipulation of the uff: 
and bff: coefficients. 

6. The pseudo-velocities and pressure coefficients are calculated. 
7. The discretization equations for pressure are obtained, boundary conditions are introduced, and 

the system of equations is solved to obtain the new values of p. 
8. The integration of the pressure gradient components is performed over each control volume and 

added to the bp" coefficients. 
9. The under-relaxation of the ui equations is made and the new values for ui are obtained, one at 

each time. 
10. For the other scalar dependent variables that are coupled with the flow field, one at each time, the 

coefficients anb are calculated, and the integration of the source term is performed. Boundary 
conditions are introduced, equations are under-relaxed, and finally the so obtained discretization 
equations are solved to find the new 4 field. 

1 1. At this point suitable convergence tests are performed. If the convergence tests are not satisfied, 
the procedure should be returned to step 2. Otherwise, the procedure goes ont to step 12. 

12. The procedure described in 10 is applied to the remaining 4 variables that have no influence over 
the flow field. The equations for these variables must be solved in some considerable extent, as 
their calculated values are the final solution. 

7.3. Concluding remarks 

The coefficients anb in the pressure equations are obtained from the pressure coefficients d u', which 
are assumed to vary linearly within each element. If an element is placed in the domain in such a way 
that all the four nodes are in the boundary, with imposed velocities, the pressure coefficients are zero 
within the element. If the contributions to the a,b coefficients in the pressure equation for one of these 
nodes are obtained only from such a boundary element, a zero ap coefficient to the equation will result, 
and the pressure cannot be calculated at this node. This is a bad equation for the pressure, and the 
domain must be discretized in such a way that there are no elements with all the vertices at specified- 
velocity boundaries. 
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In the integration of the diffusive fluxes it is assumed that q5 varies linearly with the xi co-ordinates 
within each element, while the integration of the convective fluxes is made from a qualitative/ 
quantitative analysis of the convective phenomenon. Such a procedure seems to be inconsistent, but 
leads to an overall method that results. Some more consistent alternatives were designed,'o3' ' but it was 
found that additional sophistication and consistence are companions of additional problems. 

The mass conserving velocity field used here is defined somewhat ad hoc but leads to a good 
discretization equation for the pressure; however, this is a common characteristic of the control volume 
based equal-order finite element methods and non-staggered finite difference methods. Prakash" and 
Hookey' ' have constructed some more consistent mass conserving velocity fields, but the resulting 
procedure suffers from problems that can limit the situations where it can be applied, and some of them 
can even cause the overall procedure to fail. 

8. APPLICATIONS 

Validation of the method presented above is now performed through its application to two different test 
problems, followed by comparison with available experimental and also numerical results, obtained 
with the well established finite difference method. All the test problems analysed correspond to high 
Reynolds numbers in order to legitimate the application of the k-e turbulence model that was used in 
the present formulation. 

8. I .  Three-dimensional dejected turbulent jet 

Pmblem statement. When a jet is deflected by a stream normal to its axis a three-dimensional flow 
results. A qualitative representation of this flow field, taken from the work of Patankar et aL2*, is 
sketched in Figure 3. The bending of the jet, the perturbations introduced in the main stream, and a 
secondary motion in the form of two vortices in the cross section of the deflected jet are some of the 
most important characteristics of such a flow, As the fluid (of constant density) is the same in the main 
stream and in the jet, one of the most important parameters is R, the ratio of the injection velocity to the 
main stream velocity. 

, -- --5%- k2 

Figure 3. Schematic representation of three-dimensional deflected turbulent jet flouts 



608 INCOMPRESSIBLE TURBULENT FLUID FLOW 

Computational details. Following Patankar et a1.28 and Saabas,” the problem is solved in the 
dimensional form within a box-shaped domain, and the symmetry of the flow about the yz plane is 
considered. In the x direction the domain extends from the symmetry plane (x = 0) to xi = loro, ro 
being the radius of the injection hole. In the y direction, the domain begins at the wall, and its upper 
surface is placed sufficiently far way to guarantee uniform main stream conditions there; depending on 
the particular R considered, exploratory calculations are needed to define the upper surface location. 
We used y ,  = 16r0 for R = 2.37, y, = 18ro for R = 3.95 and y, = 22r0 for R = 6.35. In the z direction, the 
upstream surface is placed at z = - 4r0, and the downstream surface is placed at such a distance that 
the mean jet velocity there became nearly parallel to the z-direction. We used z = 18rO for the location 
of this surface, the total length in this direction being thus z, = 22r0. The 1 1 x 19 x 19 grid used here 
is expanded along the three directions, and the expansion factor is defined in such a way that the 
(circular) injection hole can be modelled as a rectangle (with 2 x 3 nodes) with the same area. The 
boundary conditions for the velocity field were specified as: (i) at x = O  (symmetry plane) u=O, 
together with zero gradients of all other velocities and pressure; (ii) at x = xt, y =yt  and z = - 4r0, we 
have u = v =  0, and w =  W ,  (exception made to the points at the wall, where w = O ) ;  (iii) at the 
injection hole u = w = 0, v = qet, and for calculation of the mass entering it is assumed that 4, 
prevails over the whole hole; and (iv) for the points in the first grid plane next to the wall the boundary 
conditions imposed by the wall law are considered. The following values were adopted: ro = 0.02m, 
R = 2.37 with Cet = 8.17mJs, R = 3.95 with V,,, = 16.95m/s, and R = 6.35 with V,, = 20.7m/s, which 
give jet Reynolds numbers of 21,200, 41,500 and 53,600 respectively. For the turbulence variables k 
and E the boundary conditions were specified as: (i) zero gradients of k and E at x = 0; (ii) at x = x ,  
y = yt  and z = - 4r0 the turbulence kinetic energy is that of the free stream with a turbulence intensity 
of 0.01, and E is given by the corresponding inflow equation with 1 = 0.05~~;  (iii) at the injection hole k 
and E are given by their i d o w  equations, with a turbulence intensity of 0.025, and 1 = 2r0; and (iv) for 
the points in the first grid plane from the wall k and E are given by (4) and (9, respectively. 
Convergence is obtained after 200 overall iterations with 6,=5 x lo-’ for the ui components, 
6, = 2 x for the pressure, and 6 ,  = lo-’ for k and E .  The required CPU time is of 45 s per 
global iteration on a VAX 9210 computer. 

+Nurn. R=2.37 +Nurn. R=3.95 -o-Nurn. R=6.35 
- 6 - E x p .  R=2.37 -I.-Exp. R=3.95 -+-ExP. R4.35 

20 

16 

4 

0 
0 2 4 6 8 10 12 

zfro 

Figure 4. Locus of maximum velocity on the symmetry plane (experimental data from Reference 29) 
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Results. The calculated results include the locatin of the jet centreline, defined as the locus of 
maximum velocity on the symmetry plane. The results for the centreline of the jet in Figure 4 agree 
very well with the numerical ones of Patankar et a1.:' obtained in a 10 x 15 x 15 grid, and also with 
the experimental ones of Chasing et al.29 Plots of the computed velocity field exhibits all the 
characteristics of the expected flow as schematically represented in Figure 3. Saabas'2,'8 has also 
analysed this problem with similar encouraging conclusions. 

8.2. Flows in 90" and 45" junctions of ducts with rectangular cross sections 

Problem statement. The study of flow in junction ducts represented in Figure 5 is important for the 
knowledge of the influences of each flow over the other, thus determining the characteristics of the 
resulting joining flow. As the cross sections of the ducts are rectangular, a secondary flow due to the 
boundary layer interaction will be expected. One of the most important parameters is R, the ratio of the 
mass flow rate in one of the entry ducts to the total exit mass flow rate of the joined flows. 

Computational details. The problem is solved in its dimensional form in the domain of Figure 5 for the 
90" junction, and in one that results from it by a 45" rotation of branch 2 about the line PP. The 
discretization grids are 7 x 13 x 41 for branch 1 and 7 x 13 x 17 for branch 2, both with some 
contraction in the regions of expected intense gradients. In the interest of saving the storage capacity 
required, the discretization equations are obtained separately for each branch, and a special form of the 
solver was designed to implicitly solve for the whole domain. Additionally, symmetry about the yz 
plane is considered. Boundaxy conditions for the velocity field were specified as: (i) at the walls of 
both branches u = v = w = 0; (ii) at the symmetry plane x = 0, u = 0 and zero gradients for all other 
velocity components and pressure; (iii) for the points in the first grid planes from the walls the 
boundary conditions imposed by the wall law were considered; (iv) at the inlets of both branches the 
existence of boundary layers was considered, the velocity profile being obtained fiom the logarithmic 
law with the wall shear stress extracted fiom the friction coefficient given by Blasius formula (the 
logarithmic profile is used only when it gives a velocity less than the bulk velocity); and (v) the inlet 
velocities are perpendicular to the domain boundary at the inlet sections. The mass flux ratio R, which 
for incompressible flows is also a velocity ratio, is R = 0.75 for both 90" and 45" junctions and is based 
on the mass flux entry of branch 2. for the 90" junction, the exit bulk velocity is Wmf = 41.8ds with a 
corresponding Reynolds number of 91,692, and for the 45" junction, the exit bulk velocity is 
W,f = 39.6d.s with a corresponding Reynolds number of 86,866, the Reynolds number being based 

n = D I 54.4 
B = 12.05 

Figure 5. Domain for the junction flow calculation (dimensions in rr~n)~' 
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on the hydraulic diameter which is equal in both ducts. For the turbulence variables k and E the 
boundary conditions were specified as: (i) at x = 0 the gradients of both k and E are zero; (ii) for the 
points in the first grid planes from the walls k and E are given by (4) and (5) respectively; and (iii) at the 
inlet planes, exception made to the points adjacent to the walls, k and E are given by the equations for k 
and E at the inflows, With a turbulence intensity of 0-03 and 1 = O.lSDh, Dh being the hydraulic 
diameter equal for both branches. Convergence is obtained after 250 overall iterations with 
6, = 5 x for k and E. The 
required CPU time is of 48 s per global iteration on a VAX 9210 computer. 

for the ui components, 6, = for the pressure, and 6, = 

Results. Results are presented for the v and w velocities at some interesting planes in the domain, over 
the yz symmetry plane, for the 90" junction in Figure 6 and for the 45" junction in Figure 7. The 
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Figure 6. Velocities u and v at some interesting planes for the 90" junction 
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Figure 7.  Velocities u and v at some interesting planes for the 45" junction 

present velocity predictions agree satisfactorily well with the numerical and experimental ones of 
Dirnitriadi~,~' the latter having been obtained on a 8 x 18 x 55 grid for the 90" junction and on a 
12 x 30 x 80 grids for the 45" junction. Plots of the computed velocity fields present also all the 
characteristics that were detected experimentally and numerically by Dimitriadi~.~~ 

9. CONCLUSIONS 

In this paper, the formulatin and some examples of application of an equal-order CVFEM for three- 
dimensional incompressible turbulent fluid flow, heat trasfer, and related phenomena have been 
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presented and tested. The flexibility of handling complex geometries without additional difficulties in 
the essentials of the method are some of its most attractive features. Comparison of the reuslts obtained 
with hlly independent experimental and numerical ones are very encouraging regarding the 
capabilities of the method. Also a qualitative analysis of the calculated flow field shows that the present 
methodology is capable of capturing the main features of the flows considered. The required number of 
iterations is relatively small, but the CPU time required for one iteration is greater than that in finite- 
difference methodology. As far as we know, there are no formal limitations for the scheme. The method 
is presented together with a structured mesh, but this is only due to reasons of implementation 
convenience; the essential aspects are derived on an element-by-element basis and are not affected by 
the overall mesh used. The only problem that can arise with the used mesh is a discretization equation 
for the pressure with zero coefficient up, as referred in Section 7.3. However, this only affects a 
particular type of comer element, whose use can be easily avoided. 
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